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We have already know the basic concepts of Mirror symmetry, but not surprisingly, it’s
quite difficult to construct mirror pairs. One way to deal with this problem is by considering
simpler kind of Calabi-Yau manifolds, namely the toric Calabi-Yau manifolds. As they are
constructed algebraically, numerous methods can be applied to compute its mirror pairs
explicitly. One of the most important technique on constructing toric Calabi-Yau’s mirror
manifold is Batyrev’s construction.

1 Recalling Toric geometry and Mirror symmetry

From our previous knowledge of Toric geometry, we know that their are two lattices where
basic elements lies. They are the lattice where the polytopes are defined and dual lattice
where the fans are defined. We Shall first have a brief recall of these concepts.



1.1 Recall:toric variety

A lattice is a space isomorphism to Z"let N = Hom(M,Z) be another lattice which is
denoted as its dual. A cone, or a rational polyhedral cone 0 C Ng = N ® R

U:{Z)\iui:)\iZO,UiGN} (1.1)
=1

we say o is strongly convex if o N (—0o). A dual cone of every cone is defined by
g={meée Mgr:(m,v) >0,Vveo} (1.2)
To define fans, we have defined face of a cone by
T={veo:(muv)=0}Co (1.3)

and a fan is a collection of cones which every cone’s faces is a element and the intersecting
part of two elements is also a element, often we denote a fan as Y. From the classical
definition of toric variety, we first have a variety

Xy, = Spec{C[M N ]} (1.4)

where C[M N &) is the C algebra with generators w™ = Iw;™ for each m € M N¢.
Now we look at the original lattice, a polytope A C Mp is defined as a convex hull of
a finite set of points. Numerous ways can be used to get a bigger polytope from smaller
ones, a simple way is from convex hull by Conv(Ay, ..., Ax), another way is by Minkowski
sum as
A+ .+ Ay ={mi+...+m:m; € A;} (1.5)

and kA = A+ ...+ A is often used.

Batyrve has a way to naturally construct a toric variety from a polytope (we use the
noun polytope as polytope whose vertices are all integers, this is called integral polytope
in some literatures): Given A , consider all monomials which has the form

whw™ (1.6)

where m € kA, obviously there is a C algebra of graded k generated by these monomials,
which is called the polytope ring Sa. This ring gives a projective variety as

Pa = Proj(Sa) (1.7)
Another understanding is directly from dual cones
sr={Mm—-m):meAm e F,A>0}C Mg (1.8)

the dual of these dual cones together forms a fan which is regarded as the normal fan of
A.Obviously there is a toric variety comes from here.
We claim that these two varieties are the same,by introducing the polar polytope

A°={ve Ng:(m,v)>—-1,Yme A} C Nr (1.9)



If the origin is a interior point of the polytope, this polar polytope is well-defined and also
contains the origin. The natural fan obtained by considering the cone of A° is the normal
fan of the polytope A, and is equivalent to the projective variety.

Of course, the definition from C algebra is not explicit at all, so it is known that we
often gets the toric variety directly by the 1-dim cone of the fan, a simple example for P?
is its 1-dim cone as

{(0,1),(1,0),(-1,-1)} (1.10)
and the charges which satisfies )", Q;u; is (1,1,1), which gives the equivalence relation
(cooyws, ...) ~ (oo A9y, ...), and singularities Zx, are defined by

Zy, = | J{(w1, .., wp) 1 w; = OVi € T} (1.11)
I

where I C {1,...,k} for which {w; : i € I} does not belong to a cone in ¥.And there we

has the toric variety as
Cr - Zs

~

(1.12)

.We know this is equivalent to the Spec{C[M N &| definition,which is named as the homo-
geneous coordinate description,stricts the number of 1 dimensional cone should be

ny ) = rank(Nr) + 1 (1.13)

If we have more or less then this value, we cannot find a global homogeneous description,
for example we have
(1) ={v1,..,vp} (1.14)

and the dual lattice is in dimension dim(Ng) = r,we can only construct the embedding

p p
d(wr, ooy wp) = ([T wi™ s o [T wi™) (1.15)
=1 =1

which also gives a r dimensional variety.

Also a similar construction is applied to polytopes,which describe the toric variety
generated by polytope as a injective map of a higher dimensional projective space. For a
polytope A , we denote all its intersection with the lattice as

ANM={my,..,mg} (1.16)
j
and we can generate k monomials by fwgm"), where j € {1,...,k}. The similar variety is
defined )
(€)= PF < (wy, oy wn) = [w™ 0™ (1.17)
where [...,...] is the homogeneous coordinate of the projective space.

We also should note when these two constructions of toric varieties gives Calabi-Yau
spaces, which is ensured by the trivialness of canonical bundle or Calabi-Yau space has a
nowhere vanishing n form. This gives the Calabi-Yau condition of toric variety that all
the vector generators of the one dimensional cone lie in the same affine hyperplane, if we
considers the global language, it means all charges sum up to 0

> Qi=0 (1.18)



1.2 recall:Mirror symmetry

From our previous knowledge of 2d N = (2,2) theory, we know mirror symmetry is a
duality of two different models which has different chiralities, namely the A model and
the B model. In the perspective of string compactification, superstrings generate SCFT
theories on Calabi-Yau spaces where they are compactified, thus this duality is generalized
to a duality of two Calabi-Yau spaces.

Calabi-Yau is a space which possess the Kahler structure and the Complex structure
at the same time, and both these structures has a moduli space which is a Kdahler space
according to the deformation theory, and the dimension of their moduli space is h! and h?!
respectively(for Calabi-Yau threefold). Therefore when mirroring a Calabi-Yau threefold,

we switch their moduli space and a simple result is
pbl = p2t (1.19)

p2t = pbt (1.20)

and it’s not hard to see if we write all hodge numbers as a diamond, this flips the diamond
in an axis, like a diamond in the mirror.

Although we focus on Calabi-Yau threefold in physics, it is worth noting that the
relation above can be generalized to generic dimension of Calabi-Yau spaces

KUY (M) = pdim(M)=11(1p) (1.21)
pdimMD=LL(pry — L) (1.22)

1.3 Example of construct toric varieties by polytopes

A simple example is the P! x P! (we should be alert that this is not the resolved conifoldO(—1)®
O(—1) — P! though they are the same when we draw their diagram,but the latter one is
the diagram on a hypersurface,this one is the full diagram).

We consider the polytope [0, 1] x [0,1] and its normal fan is composed by

{(170)7(0?1)7(_170)7(07_1>} (1-23)

which is the space that glues these four varieties
SpecIC(X, V)], SpeclC(X, Y )], SpeclC(X ™, Y], SpeclC(X 1,y 1)]  (1.24)

which can be viewed as two P! space’s coordinate. And if we associate all integer points

to a monomial
{(0,0),(0,1),(1,0),(1, D)} — {1,y,z,zy} (1.25)

and we get a ring
(CI:17‘,B7 y7 xy:l (1.26)

which is
Clwy, wa, w3, w4l (1.27)

W1wW4 — Wa2ws



this ring gives a projective variety that equals to P! x P!

Clwi, wa, w3, wa)

Proj( ) =P xP! (1.28)

W1wyg — W2w3

which can be explicitly showed as the Segre embedding
FeiP Pt 5P ([s:t],[u:v]) = [su:sv:tu: to] (1.29)

1.4 remark on construct toric variety by polytope

From the example above, a quite confusing thing may occurs to our mind: does the con-
struction of toric varieties from polytopes is well-defined? This is questioned since infinitely
many polytopes gives the same normal fan, but does they all gives the same construction
as the fan gives?
Recall the definition of normal fan of a polytope(we always discuss this for a integral
polytope),
op ={v € Ng|(m,v) < <m/,v>,Vm€F,m/ €A} (1.30)

We shall expand our previous example to discuss this thing.
We examine the polytope
[0,2] x [0,2] (1.31)

now,this gives exactly the same normal fan that [0, 1] x [0, 1] gives. Therefore it gives exactly
the same toric variety in the aspect of constructing from normal fans, but if we consider
to construct a toric variety directly from polytope by consider its all integer points

{(0,0), (0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} (1.32)

this gives us a algebra
Cl1,z,y,2% 2y, y°, 2%y, 2y?, 2*y’] (1.33)

and the toric variety is by this algebra’s projective variety.
Proj(C[1, ,y, 2% xy,y*, z°y, zy*, 2°y?)) (1.34)

we can understand this by a embedding called 2-Veronese embedding, as a embedding to

IP’8

fiPIXPl P ([s 1], [u:v]) = [s%0? : s2uv : s%0? @ stu? : stuw @ sto? : 2u? : Puw s 120
(1.35)

we can see this is what we want by taking

[s:t]=[1:z2],[u:v]=[1:y] (1.36)

this tells us not only the polytope gives a toric variety, but also gives a line bundle of
how the toric variety is embedded to a higher dimensional projective space.Due to the
connection between divisors and line bundle,

OD)U) = {f € Kldiv(f) + D>0 on U) (1.37)



where K is all rational functions on U and div(f) is the divisor of a rational function(or all
it’s zeros subtract its poles),this means the construction by polytope gives a toric divisor,
which is a Ample toric divisor, the term Ample means there is a embedding to projective
space by the line bundle it generates for some positive number times the divisor.

When a toric variety Pa is constructed out of a polytope, it is automatically equipped
with an ample toric divisor D defined as the pullback of the hyperplane class on projective
space.Thus, the polytope construction yields strictly more data than the fan method.However,
given a toric variety Xy, together with an ample toric divisor, it is possible to reconstruct
the polytope A that yields this pair.

Since

{feK|div(f)+ D >0 on U} ~T(Xy,O(D)) (1.38)

is given by
= fso (1.39)

where sg is given by the global meromorphic function for which div(sg) = D,using this
correspondence, the coordinate function z; yield meromorphic functions f; on Xs,which
can be viewed as an element m; € M, and the polytope is thus the convex hull of my, ..., mg.
A simple example is we begin with the toric variety P? and the toric divisor Dg = {z¢ = 0}.
Then sy = xg is a global meromorphic section whose divisor is Dy, so the functions f;
satisfies the relation has

fzxﬁ() = X; (1'40)
means f; = x;/xo. In terms of the inhomogeneous coordinates t; = g—é and to = i—f} on the
torus, these are precisely

1,t1, 2 (1.41)

which means the polytope is the convex hull of

{(0,0),(1,0),(0,1)} (1.42)

We thus get a important corollary: The integer points of the polytope associated to a toric
variety Xy with toric line bundle O(3_, a,D,)(in which a, > 0) are

{m e M|(m,v, > —a,)} (1.43)

To sum up, the definition above tell us construction from polytopes not only considers
the base space, but also gives a specific line bundle of the space. This is a hint that if the
property we care about is the full space of a fiber bundle, we need to use polytopes rather
than fans.

2 Batyrev’s construction

To discuss what Batyrev’s theory explains,we need to clarify what a reflective polytope is.
We strict our discussion on integral polytopes when we talk about polytopes, but if the
concept of polar polytope is introduced

A°={ve Ng:(mv)>—-1,Yme A} C Nr (2.1)



it is obvious that integral polytope’s polar polytope is not always integral, and whose polar
is also integral is thus named reflective.

2.1 When is the polytope reflective

One simple fact we can observe without proving is A is reflective if and only if A° is
also reflective.But this is not enough, a more careful examination exposes that we need to
introduce some more concepts.

We first recall the concept of canonical bundle, which is a line bundle that associates to
the canonical form in the maximum tensor product of cotagent bundle.From the relation
of line bundle and divisor, we can define a canonical divisor.A fano space is when the
anticanonical bundle is ample(recall ample is when the section gives a embedding into
projective space).

One crucial obsevation is A is reflective if and only if Pa is Fano. This proof is not
hard through another definition of reflective:

(i)All faces I' of A is supproted by an affine hyperplane of the form {m € Mg :
(m,vp) = —1} for some vp € N

(i) Int(A) N M = {0}

Fano variety is not hard to check for weighted projective space P(qo, ..., ¢ ),if we let

=Y a (2.2)
i=0

then the weighted projective is Fano if an only if ¢;|q for all i.We skip the proof.

2.2 how polytope construction associates to Calabi-Yau

It is known that toric variety itself as a Calabi-Yau manifold is not compact, which is not
a good news for physicist since compactification needs a compact internal space to reduce
those extra dimension. However, polytope construction gives a elegant solution to this
problem by considering a natural hypersurface on toric variety by

apw™ 4+ ... + apw™ =0 (2.3)

defines a hypersurface in a n dimensional torus for any given coefficients ag, ..., ar € C,and
the closure of this in XA is then a hypersurface. Moreover, if A is reflective every such
hypersurface is a divisor in the anticanonical class —Kx, .

A important fact is all such hypersurface is Calabi-Yau surface when the hypersurface
has a dimension bigger than 1. This is proved easily by the language of line bundle and
canonical bundle,since

Ky ~ (Kx x X(Y)|Y (2.4)
and let
KX X X(Y) ~ @X (2.5)
then
Ox(Y) ~ Ky (2.6)



One important example is the quintic threefold as a hypersurface in the toric variety in
P* let A, denote the standard simplex Conv(0, eq, ..., e,) in R” and we take the polytope
to be

5A, —(1,1,1,1) = {a € RYa = 5b — (1,1,1,1)¥b € A4} (2.7)
In other words, the polytope we take is the convex envelope of the vectors
{(-1,-1,-1,-1),(4,-1,—-1,-1),(-1,4,—-1,-1),(-1,—-1,4,-1),(=1,—-1,—-1,4)} (2.8)
this is a reflective polytope, we can consider its natural defined hypersurface
f=Y at™ (2.9)
i=1
where AN M = {m,...,ms} and homogenization of the polynomial is
F(xo,x1, 22,3, 4) = Tor1222324 f (X1/T0, T2/ 70, 23/T0, T4/ T0) (2.10)
or in a another aspect, we can easily know the fan of its polar polytope
{(-1,-1,-1,-1),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)} (2.11)

One important fact and the only thing we should remember in this subsection is that
a reflexive polytope itself naturally induces a hypersurface which is Calabi-Yau,this is a
rather complicated work to prove with using some algebraic geometry language, and I
simply pasted the screen shot of this proof in appendix, which refers to the book ”Mirror
symmetry and Algebraic geometry”.

2.3 the Batyrev’s construction

It came quite trivial when all facts are known, naturally reflexive polytopes are connected
to Calabi-Yau hypersurfaces and we draw all facts we know in this graph
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when two polytopes are polar polytope of each other, Batyrev argues that their natural
hypersurface are mirror symmetry pairs ,if V° is the Batyrev Mirror of V', then

pbt=h"2NVO) and  RMTPN(V) = RVY(V) (2.12)
and he also generally suggests

hPA(V) = pimPa(ve) (2.13)

3 the Quintic Threefold

When P.Candelas and other physicists shocked the mathematicians at late 1990 with the
calculation of Gromov-Witten invariants to arbitary genus, this simple and paradigmatic
model of quintic threefold became renowned.

We have calculated the vertices of the polar polytope as

{(-1,-1,-1,-1),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) } (3.1)
and clearly the integral point is
{(_L _17 _17 _1)7 (17 Oa Oa 0)7 (07 17 Oa 0)? (07 07 17 0)7 (07 07 07 1)7 (O’ 07 07 O)} (32)

with all vertices and the origin,we denote the toric variety generated by this polytope as
Pao.We use the construction of the embedding

fo(CHt - PP (3.3)



(210200230 20) = (L 27 eg by oyt i 2n 20 2t 2 (3.4)
which is Pao C P? defined by
Yo = Y123y (3.5)

but this is not the desired embedding, a better construction is as a hypersurface of P* we
consider a P* with homogeneous coordinate as

[wo : wy :wy w3t wy] (3.6)

let the group (Zs)? act on P* diagonally,as

4
(Z5)* = {(wo, w1, w, w3, wy) € (C*)°|w) = 14, [ [wi = 1}/G (3.7)
=0

and G = {(w,w,w,w,w)} is the subgroup of elements that act trivially on P4. Then there
is a map

[P*/(Z5)] — P° (3.8)

[Z1: Tg: &3 : Ty : Ts] — [B12oB3T4T5 : &1 2 To @ By 1 Ty @ T5) (3.9)

this map is an isomorphism onto Pac C P* so any of such mirror quintic can be expressed
as
{25 + ... + 28 + Yz zomamyxs = 0} C [PY/(Z5)?] (3.10)

and the constant v which varies is the modulus.

3.1 how topological invariants are computed

To calculate the topological invariants of a hypersurface of the projective space, we first
calculate the projective space.
Using the Whitney sum formula of Chern class,we get

o (1)®04n)
(o) = 2492 EQ) ) (3.11)
P’ﬂ
assume that ¢;(O(1)) = h,then
n+1
(Opn(1)P0) = T (14 h) = (1 + hy™+! (3.12)
i=1
and ¢(Opn) = 1,50
c(Tpn) = (1 + h)"*! (3.13)
it’s clear that
cx(Tpn) = CE A¥ (3.14)

from the Chern class of the tangent bundle and the relation between tangent bundle and

normal bundle, we get
C(T]pn |X)
c(TX) = ——+= 3.15

~10 -



and

NX ~ OX(d)
SO
C(Nx) =1+dh
thus for quintic
1+ h)P
I =15

we get
c3(TX) = —40R3

/ h? = deg(X)/ h =5
X P3

X :/ e3(TX) = —-200
X

Using the Lefschetz hyperplane theorem, we get that

with the normalization

then

bp=1 b1=0 by=1

and Poincare duality
bg =1 bs=0 by=1

SO
by =204

according to the definition of Euler characteristic.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Then we get the hodge diamond with respect to Calabi-Yau manifold’s symmetry on

hodge diamonds.
r*t =101, R =1

- 11 -

(3.25)



A reflexive polytope and Calabi-Yau

PROPOSITION 4.1.3. If A is a reflezive polytope of dimension n, then the gen-
eral member V € |— Kp, | is a Calabi- Yau variety of dimension n—1. Furthermore,
if T is a projective subdivision and X = Xz, then:

(i) The general member V € | — Kx| is a Calabi-Yau orbifold.
(ii) If £ is mazimal, then the general member V € | — Kx| is @ minimal Calabi-
Yau orbifold.

PROOF. We first consider V. By the definition of Calabi-Yau variety given in
Section 1.4, we must show that ¥ has canonical singularities, a trivial canonical
sheaf, and vanishing cohomology H*(V,0y) =0for0<k<n -1

Since the Fano toric variety Pa is Gorenstein, it has at most canonical singu-
larities (see [Batyrevd4]). Then a version of the Bertini theorem guarantees that
the general member V € | — Kp, | also has at most canonical singularities [Reidl,
Theorem 1.13]. Also, note that

Qpt = 08, (~Ke,) ® O > Oy,
where the first isomorphism is the adjunction formula (which holds since P4 is
Cohen-Macaulay and —Kp, is Cartier). The final step is to show that H*(V, Oy ) =
0 for 0 < k <n—1. Since Op, (—V) =~ Op, (Ke,) = ﬁ;a, we get an exact sequence
0 —-ﬁ:,"a _’OPQ —-—-—Ivo“; —00’
which gives the long exact sequence
oo = H*(Py, Op,) — HN(V,0p) — H**'(Ps,08,) — -+
However, H*(P5,0p,) =0 for k£ > 0 and, by Serre-Grothendieck duality, we have
H""'l(ll’a.ﬁﬁa) ~ H**=Y(Ps,0p, )" =0 for K < n — 1. This implies the desired
vanishing of H*(V, Oy ), and we conclude that V' is Calabi-Yau.

Now let & be a projective subdivision and set X = Xx. Since —Kx is semi-
ample by Lemma 4.1.2, the linear system | — Kx| has no basepoints. Furthermore,
X is an orbifold since ¥ is simplicial, and then the Bertini theorem (applied to
the fixed loci of the local quotients defining X as an orbifold) guarantees that the
general member V € | — Kx| is a suborbifold of X. Everything we did above
remains true, and it follows that V' is a Calabi-Yau orbifold.

Finally, suppose that T is maximal. According to Definition 1.4.1, Visa
minimal Calabi-Yau provided it has Gorenstein Q-factorial terminal singularities.
Since V is already a Gorenstein orbifold, it automatically has Gorenstein Q-factorial
singularities. Hence, we need only show that V' has terminal singularities. However,
the ambient space X is terminal by Lemma 4.1.2, so we are done by using Bertini
as in the proof of [Reid1, Theorem 1.13]. a

Figure 2.

B Calculation of polar polytopes

A simple Mathematica program can be used to solve the inequality of polar polytopes (with
the help from Deepseek to debug)

Listing 1. Compute polar polytope

N

ClearAll["Global ‘*x"];

- 12 —



polarPolytopeVertices [vertices_List] :=
Module [{n, allSubsets, polarVertices = {}, subset, A, b,
candidate,
k, satisfiedl},
n = Length[First[vertices]];
If [Length[vertices] != n + 1,
Print ["Error:_ The_ number_ of verticesgshould be, ", n + 1,
",ubut,got,", Length[vertices]];
Return[$Failed]];

allSubsets = Subsets[Range[Length[vertices]], {n}];

Do [

subset = allSubsets[[s]];

A = vertices[[subset]];

If [Det[A] '= O,

b = -ConstantArray[1l, n];
candidate = LinearSolvel[A, b];
satisfied = True;

For[k = 1, k <= Length[vertices], k++,
If [vertices [[k]].candidate < -1, satisfied = False; Break

(1;]
15
If [satisfied, AppendTo[polarVertices, candidate]]
1;

, {s, 1, Length[allSubsets]}];

DeleteDuplicates [polarVertices]
]

For example

verticesQuintic = {{-1, -1, -1, -1}, {4, -1, -1, -1}, {-1,
4: _1, _1}, {_1: _1: 4’ _1}, {_1, _1’ _1: 4}};
polarPolytopeVertices [verticesQuintic]

and we get

{{o, o, o, 1}, {o, o, 1, 0}, {0, 1, 0, 0}, {1, 0, O, O},
{-1, -1, -1, -1}}

C useful relations of Chern class and topological invariants

C.1 Lefschetz hyperplane theorem

With X is a n-dimensional smooth connected complex projective variety embedded in P",H
is a hypersurface of P, Y = X N H. Lefschetz said that:Considering i : Y — X
1y : He(Y,Z) ~ H(X,Z) for any k < n — 1,and i, is a surjection when k =n — 1
2y (Y, Z) ~ (X, Z) for any k <n —1

~13 -




C.2 Tangent and normal bundle of hypersurface

As X C Y is a smooth hypersurface, its normal bundle
Nx = Oy(X)|x (C.1)

is limited by the line bundle of X ,and for ¥ = P™ and X is a hypersurface of degree d,

NX ~ Ox(d) (CQ)
we also have short exact sequence
0—-TX -TY|x - Nx —0 (C.3)
which enables (TYx)
(& X
c(TX) = ——"+ C4

C.3 Tangent bundle’s properties of projective space

We assume that the homogeneous coordinate of P" is [xg : @1 : ... : zp], and a tangent
vector is the generator of the coordinate perturbation

[xo + €80 1 .t Ty + €8y (C.5)

if the perturbation do not changes the coordinate respect to the equivalent relation, we
have

we now construct two maps,the first one is from a trivial line bundle to the direct sums of
line bundles

f:0 = 01)2m+ (C.7)
1= [zo:xy ..t Ty (C.8)

and the second one is from the direct sums of line bundles to the tangent bundle,

g: 02+ 5 Ty, (C.9)
- 0
g:i[so:stie sy — Zsza—x (C.10)
i=0 ¢
and we can confirm that the kernel of the second map is the image of the first, to say
Oy, O xp O
331 +xi(— ———)=0 C.11
2" = 2, oy U 2 2oy (e

in tangent vectors.Thus we get

0 — Opn — Opn (1)2 ) 5 T — 0 (C.12)

References

[1] S. Hosono, A. Klemm and S. Theisen, Lectures on Mirror Symmetry, arxiv:9403096.
[2] Emily Clader and Yongbin Ruan, Mirror Symmetry Constructions arxiv:1412.1268
[3] David A.Cox and Sheldon Katz, Mirror Symmetry and Algebraic Geometry, 1991.

— 14 —



	Recalling Toric geometry and Mirror symmetry
	Recall:toric variety
	recall:Mirror symmetry
	Example of construct toric varieties by polytopes
	remark on construct toric variety by polytope

	Batyrev's construction
	When is the polytope reflective
	how polytope construction associates to Calabi-Yau
	the Batyrev's construction

	the Quintic Threefold
	how topological invariants are computed

	reflexive polytope and Calabi-Yau
	Calculation of polar polytopes
	useful relations of Chern class and topological invariants
	Lefschetz hyperplane theorem
	Tangent and normal bundle of hypersurface
	Tangent bundle's properties of projective space


