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We have already know the basic concepts of Mirror symmetry, but not surprisingly, it’s

quite difficult to construct mirror pairs. One way to deal with this problem is by considering

simpler kind of Calabi-Yau manifolds, namely the toric Calabi-Yau manifolds. As they are

constructed algebraically, numerous methods can be applied to compute its mirror pairs

explicitly. One of the most important technique on constructing toric Calabi-Yau’s mirror

manifold is Batyrev’s construction.

1 Recalling Toric geometry and Mirror symmetry

From our previous knowledge of Toric geometry, we know that their are two lattices where

basic elements lies. They are the lattice where the polytopes are defined and dual lattice

where the fans are defined. We Shall first have a brief recall of these concepts.
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1.1 Recall:toric variety

A lattice is a space isomorphism to Zn,let N = Hom(M,Z) be another lattice which is

denoted as its dual. A cone, or a rational polyhedral cone σ ⊆ NR = N ⊗ R

σ = {
s∑

i=1

λiui : λi ≥ 0, ui ∈ N} (1.1)

we say σ is strongly convex if σ ∩ (−σ). A dual cone of every cone is defined by

σ̆ = {m ∈MR : ⟨m, v⟩ ≥ 0, ∀v ∈ σ} (1.2)

To define fans, we have defined face of a cone by

τ = {v ∈ σ : ⟨m, v⟩ = 0} ⊆ σ (1.3)

and a fan is a collection of cones which every cone’s faces is a element and the intersecting

part of two elements is also a element, often we denote a fan as Σ. From the classical

definition of toric variety, we first have a variety

Xσ = Spec{C[M ∩ σ̆]} (1.4)

where C[M ∩ σ̆] is the C algebra with generators wm = Πwmi
i for each m ∈M ∩ σ̆.

Now we look at the original lattice, a polytope ∆ ⊂MR is defined as a convex hull of

a finite set of points. Numerous ways can be used to get a bigger polytope from smaller

ones, a simple way is from convex hull by Conv(∆1, ...,∆k), another way is by Minkowski

sum as

∆1 + ...+∆k = {m1 + ...+mk : mi ∈ ∆i} (1.5)

and k∆ = ∆+ ...+∆ is often used.

Batyrve has a way to naturally construct a toric variety from a polytope (we use the

noun polytope as polytope whose vertices are all integers, this is called integral polytope

in some literatures): Given ∆ , consider all monomials which has the form

wk
0w

m (1.6)

where m ∈ k∆, obviously there is a C algebra of graded k generated by these monomials,

which is called the polytope ring S∆. This ring gives a projective variety as

P∆ = Proj(S∆) (1.7)

Another understanding is directly from dual cones

σ̆F = {λ(m−m
′
) : m ∈ ∆,m

′ ∈ F, λ ≥ 0} ⊂MR (1.8)

the dual of these dual cones together forms a fan which is regarded as the normal fan of

∆.Obviously there is a toric variety comes from here.

We claim that these two varieties are the same,by introducing the polar polytope

∆◦ = {v ∈ NR : ⟨m, v⟩ ≥ −1, ∀m ∈ ∆} ⊂ NR (1.9)
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If the origin is a interior point of the polytope, this polar polytope is well-defined and also

contains the origin. The natural fan obtained by considering the cone of ∆◦ is the normal

fan of the polytope ∆, and is equivalent to the projective variety.

Of course, the definition from C algebra is not explicit at all, so it is known that we

often gets the toric variety directly by the 1-dim cone of the fan, a simple example for P2

is its 1-dim cone as

{(0, 1), (1, 0), (−1,−1)} (1.10)

and the charges which satisfies
∑

iQiui is (1, 1, 1), which gives the equivalence relation

(..., wi, ...) ∼ (..., λQiwi, ...), and singularities ZΣ are defined by

ZΣ =
⋃
I

{(w1, ..., wk) : wi = 0∀i ∈ I} (1.11)

where I ⊆ {1, ..., k} for which {wi : i ∈ I} does not belong to a cone in Σ.And there we

has the toric variety as
Cn − ZΣ

∼
(1.12)

.We know this is equivalent to the Spec{C[M ∩ σ̆] definition,which is named as the homo-

geneous coordinate description,stricts the number of 1 dimensional cone should be

nΣ(1) = rank(NR) + 1 (1.13)

.If we have more or less then this value, we cannot find a global homogeneous description,

for example we have

Σ(1) = {v1, .., vp} (1.14)

and the dual lattice is in dimension dim(NR) = r,we can only construct the embedding

ϕ(w1, ..., wp) = (

p∏
i=1

w
vi,1
i , ...,

p∏
i=1

w
vi,r
i ) (1.15)

which also gives a r dimensional variety.

Also a similar construction is applied to polytopes,which describe the toric variety

generated by polytope as a injective map of a higher dimensional projective space. For a

polytope ∆ , we denote all its intersection with the lattice as

∆ ∩M = {m1, ...,mk} (1.16)

and we can generate k monomials by w
(mj

i )
i , where j ∈ {1, ..., k}. The similar variety is

defined

(C∗)n → Pk : (w1, ..., wn) → [w
(m1

i )
i , ..., w

(mn
i )

i ] (1.17)

where [..., ...] is the homogeneous coordinate of the projective space.

We also should note when these two constructions of toric varieties gives Calabi-Yau

spaces, which is ensured by the trivialness of canonical bundle or Calabi-Yau space has a

nowhere vanishing n form. This gives the Calabi-Yau condition of toric variety that all

the vector generators of the one dimensional cone lie in the same affine hyperplane, if we

considers the global language, it means all charges sum up to 0∑
i

Qi = 0 (1.18)

– 3 –



1.2 recall:Mirror symmetry

From our previous knowledge of 2d N = (2, 2) theory, we know mirror symmetry is a

duality of two different models which has different chiralities, namely the A model and

the B model. In the perspective of string compactification, superstrings generate SCFT

theories on Calabi-Yau spaces where they are compactified, thus this duality is generalized

to a duality of two Calabi-Yau spaces.

Calabi-Yau is a space which possess the Kähler structure and the Complex structure

at the same time, and both these structures has a moduli space which is a Kähler space

according to the deformation theory, and the dimension of their moduli space is h1,1 and h2,1

respectively(for Calabi-Yau threefold). Therefore when mirroring a Calabi-Yau threefold,

we switch their moduli space and a simple result is

h1,1 = h̃2,1 (1.19)

h2,1 = h̃1,1 (1.20)

and it’s not hard to see if we write all hodge numbers as a diamond, this flips the diamond

in an axis, like a diamond in the mirror.

Although we focus on Calabi-Yau threefold in physics, it is worth noting that the

relation above can be generalized to generic dimension of Calabi-Yau spaces

h1,1(M) = hdim(M)−1,1(M̃) (1.21)

hdim(M)−1,1(M) = h1,1(M̃) (1.22)

1.3 Example of construct toric varieties by polytopes

A simple example is the P1×P1(we should be alert that this is not the resolved conifoldO(−1)⊕
O(−1) → P1,though they are the same when we draw their diagram,but the latter one is

the diagram on a hypersurface,this one is the full diagram).

We consider the polytope [0, 1]× [0, 1] and its normal fan is composed by

{(1, 0), (0, 1), (−1, 0), (0,−1)} (1.23)

which is the space that glues these four varieties

Spec[C(X,Y )], Spec[C(X,Y −1)], Spec[C(X−1, Y )], Spec[C(X−1, Y −1)] (1.24)

which can be viewed as two P1 space’s coordinate. And if we associate all integer points

to a monomial

{(0, 0), (0, 1), (1, 0), (1, 1)} → {1, y, x, xy} (1.25)

and we get a ring

C[1, x, y, xy] (1.26)

which is
C[w1, w2, w3, w4]

w1w4 − w2w3
(1.27)
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this ring gives a projective variety that equals to P1 × P1

Proj(
C[w1, w2, w3, w4]

w1w4 − w2w3
) = P1 × P1 (1.28)

which can be explicitly showed as the Segre embedding

f : P1 × P1 → P3 : ([s : t], [u : v]) → [su : sv : tu : tv] (1.29)

1.4 remark on construct toric variety by polytope

From the example above, a quite confusing thing may occurs to our mind: does the con-

struction of toric varieties from polytopes is well-defined? This is questioned since infinitely

many polytopes gives the same normal fan, but does they all gives the same construction

as the fan gives?

Recall the definition of normal fan of a polytope(we always discuss this for a integral

polytope),

σF = {v ∈ NR| ⟨m, v⟩ ≤
〈
m

′
, v
〉
, ∀m ∈ F,m

′ ∈ ∆} (1.30)

We shall expand our previous example to discuss this thing.

We examine the polytope

[0, 2]× [0, 2] (1.31)

now,this gives exactly the same normal fan that [0, 1]× [0, 1] gives.Therefore it gives exactly

the same toric variety in the aspect of constructing from normal fans, but if we consider

to construct a toric variety directly from polytope by consider its all integer points

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} (1.32)

this gives us a algebra

C[1, x, y, x2, xy, y2, x2y, xy2, x2y2] (1.33)

and the toric variety is by this algebra’s projective variety.

Proj(C[1, x, y, x2, xy, y2, x2y, xy2, x2y2]) (1.34)

we can understand this by a embedding called 2-Veronese embedding, as a embedding to

P8

f : P1×P1 → P3 : ([s : t], [u : v]) → [s2u2 : s2uv : s2v2 : stu2 : stuv : stv2 : t2u2 : t2uv : t2v2]

(1.35)

we can see this is what we want by taking

[s : t] = [1 : x], [u : v] = [1 : y] (1.36)

this tells us not only the polytope gives a toric variety, but also gives a line bundle of

how the toric variety is embedded to a higher dimensional projective space.Due to the

connection between divisors and line bundle,

O(D)(U) = {f ∈ K|div(f) +D ≥ 0 on U} (1.37)
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where K is all rational functions on U and div(f) is the divisor of a rational function(or all

it’s zeros subtract its poles),this means the construction by polytope gives a toric divisor,

which is a Ample toric divisor, the term Ample means there is a embedding to projective

space by the line bundle it generates for some positive number times the divisor.

When a toric variety P∆ is constructed out of a polytope, it is automatically equipped

with an ample toric divisor D defined as the pullback of the hyperplane class on projective

space.Thus, the polytope construction yields strictly more data than the fan method.However,

given a toric variety XΣ together with an ample toric divisor, it is possible to reconstruct

the polytope ∆ that yields this pair.

Since

{f ∈ K|div(f) +D ≥ 0 on U} ≃ Γ(XΣ,O(D)) (1.38)

is given by

f → fṡ0 (1.39)

where s0 is given by the global meromorphic function for which div(s0) = D,using this

correspondence, the coordinate function xi yield meromorphic functions fi on XΣ,which

can be viewed as an elementmi ∈M , and the polytope is thus the convex hull ofm0, ...,mk.

A simple example is we begin with the toric variety P2 and the toric divisor D0 = {x0 = 0}.
Then s0 = x0 is a global meromorphic section whose divisor is D0, so the functions fi
satisfies the relation has

fiẋ0 = xi (1.40)

means fi = xi/x0. In terms of the inhomogeneous coordinates t1 = x1
x0

and t2 = x2
x0

on the

torus, these are precisely

1, t1, t2 (1.41)

which means the polytope is the convex hull of

{(0, 0), (1, 0), (0, 1)} (1.42)

We thus get a important corollary: The integer points of the polytope associated to a toric

variety XΣ with toric line bundle O(
∑

ρ aρDρ)(in which aρ ≥ 0) are

{m ∈M | ⟨m, vρ ≥ −aρ⟩} (1.43)

To sum up, the definition above tell us construction from polytopes not only considers

the base space, but also gives a specific line bundle of the space. This is a hint that if the

property we care about is the full space of a fiber bundle, we need to use polytopes rather

than fans.

2 Batyrev’s construction

To discuss what Batyrev’s theory explains,we need to clarify what a reflective polytope is.

We strict our discussion on integral polytopes when we talk about polytopes, but if the

concept of polar polytope is introduced

∆◦ = {v ∈ NR : ⟨m, v⟩ ≥ −1, ∀m ∈ ∆} ⊂ NR (2.1)
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it is obvious that integral polytope’s polar polytope is not always integral, and whose polar

is also integral is thus named reflective.

2.1 When is the polytope reflective

One simple fact we can observe without proving is ∆ is reflective if and only if ∆◦ is

also reflective.But this is not enough, a more careful examination exposes that we need to

introduce some more concepts.

We first recall the concept of canonical bundle, which is a line bundle that associates to

the canonical form in the maximum tensor product of cotagent bundle.From the relation

of line bundle and divisor, we can define a canonical divisor.A fano space is when the

anticanonical bundle is ample(recall ample is when the section gives a embedding into

projective space).

One crucial obsevation is ∆ is reflective if and only if P∆ is Fano. This proof is not

hard through another definition of reflective:

(i)All faces Γ of ∆ is supproted by an affine hyperplane of the form {m ∈ MR :

⟨m, vΓ⟩ = −1} for some vΓ ∈ N

(ii)Int(∆) ∩M = {0}
Fano variety is not hard to check for weighted projective space P(q0, ..., qn),if we let

q =
n∑

i=0

qi (2.2)

then the weighted projective is Fano if an only if qi|q for all i.We skip the proof.

2.2 how polytope construction associates to Calabi-Yau

It is known that toric variety itself as a Calabi-Yau manifold is not compact, which is not

a good news for physicist since compactification needs a compact internal space to reduce

those extra dimension. However, polytope construction gives a elegant solution to this

problem by considering a natural hypersurface on toric variety by

a0w
m0 + ...+ akw

mk = 0 (2.3)

defines a hypersurface in a n dimensional torus for any given coefficients a0, ..., ak ∈ C,and
the closure of this in X∆ is then a hypersurface. Moreover, if ∆ is reflective every such

hypersurface is a divisor in the anticanonical class −KX∆
.

A important fact is all such hypersurface is Calabi-Yau surface when the hypersurface

has a dimension bigger than 1. This is proved easily by the language of line bundle and

canonical bundle,since

KY ≃ (KX × X(Y ))|Y (2.4)

and let

KX × X(Y ) ≃ OX (2.5)

then

OX(Y ) ≃ K−1
X (2.6)

– 7 –



One important example is the quintic threefold as a hypersurface in the toric variety in

P4,let ∆n denote the standard simplex Conv(0, e1, ..., en) in Rn ,and we take the polytope

to be

5∆4 − (1, 1, 1, 1) = {a ∈ R4|a = 5b− (1, 1, 1, 1)∀b ∈ ∆4} (2.7)

In other words, the polytope we take is the convex envelope of the vectors

{(−1,−1,−1,−1), (4,−1,−1,−1), (−1, 4,−1,−1), (−1,−1, 4,−1), (−1,−1,−1, 4)} (2.8)

this is a reflective polytope, we can consider its natural defined hypersurface

f =
∑
i=1

ait
mi (2.9)

where ∆ ∩M = {m1, ...,ms} and homogenization of the polynomial is

F (x0, x1, x2, x3, x4) = x0x1x2x3x4f(x1/x0, x2/x0, x3/x0, x4/x0) (2.10)

or in a another aspect, we can easily know the fan of its polar polytope

{(−1,−1,−1,−1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} (2.11)

One important fact and the only thing we should remember in this subsection is that

a reflexive polytope itself naturally induces a hypersurface which is Calabi-Yau,this is a

rather complicated work to prove with using some algebraic geometry language, and I

simply pasted the screen shot of this proof in appendix, which refers to the book ”Mirror

symmetry and Algebraic geometry”.

2.3 the Batyrev’s construction

It came quite trivial when all facts are known, naturally reflexive polytopes are connected

to Calabi-Yau hypersurfaces and we draw all facts we know in this graph
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Figure 1.

when two polytopes are polar polytope of each other, Batyrev argues that their natural

hypersurface are mirror symmetry pairs ,if V ◦ is the Batyrev Mirror of V , then

h1,1 = hn−2,1(V ◦) and hn−2,1(V ) = h1,1(V ) (2.12)

and he also generally suggests

hp,q(V ) = hn−1−p,q(V ◦) (2.13)

3 the Quintic Threefold

When P.Candelas and other physicists shocked the mathematicians at late 1990 with the

calculation of Gromov-Witten invariants to arbitary genus, this simple and paradigmatic

model of quintic threefold became renowned.

We have calculated the vertices of the polar polytope as

{(−1,−1,−1,−1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} (3.1)

and clearly the integral point is

{(−1,−1,−1,−1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 0, 0)} (3.2)

with all vertices and the origin,we denote the toric variety generated by this polytope as

P∆◦ .We use the construction of the embedding

f◦ : (C∗)4 → P5 (3.3)
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[z1 : z2 : z3 : z4] → [1 : z−1
1 z−1

2 z−1
3 z−1

4 : z1 : z2 : z3 : z4] (3.4)

which is P∆◦ ⊂ P5 defined by

y50 = y1y2y3y4y5 (3.5)

but this is not the desired embedding, a better construction is as a hypersurface of P4,we

consider a P4 with homogeneous coordinate as

[w0 : w1 : w2 : w3 : w4] (3.6)

let the group (Z5)
3 act on P4 diagonally,as

(Z5)
3 = {(w0, w1, w2, w3, w4) ∈ (C∗)5|w5

i = 1∀i,
4∏

i=0

wi = 1}/G (3.7)

and G = {(w,w,w,w,w)} is the subgroup of elements that act trivially on P4. Then there

is a map

[P4/(Z5)
3] → P5 (3.8)

[x̂1 : x̂2 : x̂3 : x̂4 : x̂5] → [x̂1x̂2x̂3x̂4x̂5 : x̂1 : x̂2 : x̂3 : x̂4 : x̂5] (3.9)

this map is an isomorphism onto P∆◦ ⊂ P4 so any of such mirror quintic can be expressed

as

{x51 + ...+ x55 + ψx1x2x3x4x5 = 0} ⊂ [P4/(Z5)
3] (3.10)

and the constant ψ which varies is the modulus.

3.1 how topological invariants are computed

To calculate the topological invariants of a hypersurface of the projective space, we first

calculate the projective space.

Using the Whitney sum formula of Chern class,we get

c(TPn) =
c(OPn(1)⊕(1+n))

OPn
(3.11)

assume that c1(O(1)) = h,then

c(OPn(1)⊕(1+n)) =
n+1∏
i=1

(1 + h) = (1 + h)n+1 (3.12)

and c(OPn) = 1,so

c(TPn) = (1 + h)n+1 (3.13)

it’s clear that

ck(TPn) = ∁kn+1h
k (3.14)

from the Chern class of the tangent bundle and the relation between tangent bundle and

normal bundle, we get

c(TX) =
c(TPn |X)

c(NX)
(3.15)
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and

NX ≃ OX(d) (3.16)

so

c(NX) = 1 + dh (3.17)

thus for quintic

c(TX) =
(1 + h)5

1 + 5h
(3.18)

we get

c3(TX) = −40h3 (3.19)

with the normalization ∫
X
h3 = deg(X)

∫
P3

h3 = 5 (3.20)

then

χ =

∫
X
c3(TX) = −200 (3.21)

Using the Lefschetz hyperplane theorem, we get that

b0 = 1 b1 = 0 b2 = 1 (3.22)

and Poincare duality

b6 = 1 b5 = 0 b4 = 1 (3.23)

so

b3 = 204 (3.24)

according to the definition of Euler characteristic.

Then we get the hodge diamond with respect to Calabi-Yau manifold’s symmetry on

hodge diamonds.

h2,1 = 101, h1,1 = 1 (3.25)
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A reflexive polytope and Calabi-Yau

Figure 2.

B Calculation of polar polytopes

A simple Mathematica program can be used to solve the inequality of polar polytopes (with

the help from Deepseek to debug)

Listing 1. Compute polar polytope

1 ClearAll["Global ‘*"];

2
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3 polarPolytopeVertices[vertices_List] :=

4 Module [{n, allSubsets , polarVertices = {}, subset , A, b,

candidate ,

5 k, satisfied},

6 n = Length[First[vertices ]];

7 If[Length[vertices] != n + 1,

8 Print["Error:␣The␣number␣of␣vertices␣should␣be␣", n + 1,

9 ",␣but␣got␣", Length[vertices ]];

10 Return[$Failed ]];
11

12 allSubsets = Subsets[Range[Length[vertices]], {n}];

13

14 Do[

15 subset = allSubsets [[s]];

16 A = vertices [[ subset ]];

17 If[Det[A] != 0,

18 b = -ConstantArray [1, n];

19 candidate = LinearSolve[A, b];

20 satisfied = True;

21 For[k = 1, k <= Length[vertices], k++,

22 If[vertices [[k]]. candidate < -1, satisfied = False; Break

[];]

23 ];

24 If[satisfied , AppendTo[polarVertices , candidate ]]

25 ];

26 , {s, 1, Length[allSubsets ]}];

27

28 DeleteDuplicates[polarVertices]

29 ]

For example

1 verticesQuintic = {{-1, -1, -1, -1}, {4, -1, -1, -1}, {-1,

4, -1, -1}, {-1, -1, 4, -1}, {-1, -1, -1, 4}};

2 polarPolytopeVertices[verticesQuintic]

and we get

1 {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0},

{-1, -1, -1, -1}}

C useful relations of Chern class and topological invariants

C.1 Lefschetz hyperplane theorem

WithX is a n-dimensional smooth connected complex projective variety embedded in Pn,H

is a hypersurface of Pn, Y = X ∩H. Lefschetz said that:Considering i : Y → X

1.i∗ : Hk(Y,Z) ≃ Hk(X,Z) for any k < n− 1,and i∗ is a surjection when k = n− 1

2.i∗ : πk(Y,Z) ≃ πk(X,Z) for any k < n− 1
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C.2 Tangent and normal bundle of hypersurface

As X ⊂ Y is a smooth hypersurface, its normal bundle

NX = OY (X)|X (C.1)

is limited by the line bundle of X,and for Y = Pn and X is a hypersurface of degree d,

NX ≃ OX(d) (C.2)

we also have short exact sequence

0 → TX → TY |X → NX → 0 (C.3)

which enables

c(TX) =
c(TY |X)

c(NX)
(C.4)

C.3 Tangent bundle’s properties of projective space

We assume that the homogeneous coordinate of Pn is [x0 : x1 : ... : xn], and a tangent

vector is the generator of the coordinate perturbation

[x0 + ϵs0 : ... : xn + ϵsn] (C.5)

if the perturbation do not changes the coordinate respect to the equivalent relation, we

have

si = λxi (C.6)

we now construct two maps,the first one is from a trivial line bundle to the direct sums of

line bundles

f : O → O(1)⊕(n+1) (C.7)

1 → [x0 : x1 : ... : xn] (C.8)

and the second one is from the direct sums of line bundles to the tangent bundle,

g : O(1)⊕(n+1) → TPn (C.9)

g : [s0 : s1 : ... : sn] →
n∑

i=0

si
∂

∂xi
(C.10)

and we can confirm that the kernel of the second map is the image of the first, to say∑
xi

∂

∂xi
=

∑
k ̸=j

xk
∂yk
∂xk

∂

∂yk
+ xj(−

∑
k ̸=j

xk
x2j

∂

∂yk
) = 0 (C.11)

in tangent vectors.Thus we get

0 → OPn → OPn(1)⊗(n+1) → TPn → 0 (C.12)
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